
INTRODUCTION

ANTIOXIDANTS are important means of negating the delete-
rious effects of oxidative stress, and are viewed as poten-

tial protective agents against age-related degenerative disorders
such as atherosclerosis, cataractogenesis, carcinogenesis, Parkin-
son’s disease, and Alzheimer’s disease. Unless detoxified, the
reactive oxygen species [ROS; e.g., hydrogen peroxide (H2O2),
superoxide anion (O2

2), hydroxyl (OH�)] generated during
processes such as mitochondrial electron transport, UV irra-
diation, inflammation, and metabolism of xenobiotics by the
CYP450 system can attack the cellular macromolecules, in-
cluding DNA, protein, and lipids. The interaction of ROS with
lipids is particularly damaging to cells because a single ROS
molecule can generate a number of toxicants such as the hydro-
peroxides, peroxyradicals, alkoxy radicals, and a,b-unsaturated
aldehydes due to the autocatalytic propagation of lipid perox-
idation reactions. Lipid peroxidation has been implicated in
the etiology of age-related degenerative disorders (15, 34, 61,
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66). Therefore, termination of ROS-induced lipid peroxida-
tion and the detoxification of lipid peroxidation products are
equally important as the disposition of ROS to protect cells
from oxidative stress.

Aerobic organisms have a multitier defense system to com-
bat oxidative stress that provides protection not only against
the ROS, but also against the toxic electrophilic compounds
generated by the interaction of ROS with cellular constituents,
particularly the lipid peroxidation products. Enzymes such as
catalase (CAT), superoxide dismutases (SOD), and glutathione
peroxidases (GPxs) and nonenzymatic defense such as gluta-
thione (GSH), urate, and tocopherols provide the first line of
defense by inactivating ROS and scavenging the free radicals.
However, even the small amounts of ROS escaping this first
line of defense can initiate the autocatalytic chain of lipid
peroxidation, resulting in the formation of a variety of toxic
electrophilic species such as alkoxyradicals, peroxyradicals,
epoxides, hydroperoxides, and relatively stable toxic and reactive
end products such as 4-hydroxyalkenals [e.g., 4-hydroxynonenal



(4-HNE)], malondialdehyde, and acrolein. The defense mech-
anisms to provide protection against lipid peroxidation con-
stitute the second line of defense against ROS. Recent studies
suggest that glutathione S-transferases (GSTs) play a crucial
role in defense mechanisms against lipid peroxidation. In this
article, this antioxidant role of GSTs and its implications in
stress-mediated signaling are reviewed.

DEFENSE MECHANISMS AGAINST
LIPID PEROXIDATION

Se-dependent glutathione peroxidases (Se-GPxs) are known
to provide protection against lipid peroxidation by terminat-
ing lipid peroxidation cascade through the reduction of fatty
acid hydroperoxides (FA-OOH) and phospholipid hydroper-
oxides (PL-OOH). At least four Se-GPxs are known that can
catalyze GSH-dependent reduction of lipid hydroperoxides.
Of these selenoenzymes, GPx-1, GPx-2, and GPx-3, which
are tetramers, can reduce H2O2 as well as FA-OOH, but not
the intact PL-OOH, present in membranes (12, 20, 56). Only
GPx-4, which is a membrane-associated monomeric enzyme,
can reduce intact PL-OOH (58). Thus, Se-GPxs provide pro-
tection against H2O2 toxicity as well as the toxicity due to
lipid peroxidation. In addition to Se-GPxs, GSTs can also re-
duce FA-OOH and PL-OOH, and their importance as antioxi-
dant enzymes is beginning to be recognized only recently. Some
of the GST isozymes can efficiently reduce FA-OOH as well
as PL-OOH and can interrupt the autocatalytic chain of lipid
peroxidation by reducing these hydroperoxides that propagate
lipid peroxidation chain reactions (62, 63, 68). In addition, a
subgroup of GST isozymes with substrate preference for a,b-
unsaturated carbonyls (e.g., 4-HNE and acrolein) can effec-
tively detoxify these toxic end products of lipid peroxidation
(1, 27, 48, 49, 52, 53, 69, 70). Thus, GSTs not only comple-
ment GPxs in attenuating lipid peroxidation by reducing hy-
droperoxides, but also protect cells from toxic end products
of lipid peroxidation. Furthermore, compelling evidence sug-
gesting the role of GSTs in the regulation of ROS-mediated
cell cycle signaling has emerged in recent years. In this arti-
cle, we have evaluated these physiological roles of GSTs.

ROLE OF GSTS IN DEFENSE AGAINST
LIPID PEROXIDATION

Mammalian GSTs belong to a multifunctional family of
phase II detoxification enzymes whose primary function is to
catalyze the conjugation of electrophilic xenobiotics (or their
metabolites) to GSH (13, 24, 28, 32). Currently, mammalian
cytosolic GSTs are divided into four major gene families:
Alpha, Mu, Pi, and Theta (24). In addition, at least four minor
families (Zeta, Sigma, Kappa, and Omega) have also been iden-
tified (54). With the exception of the microsomal GSTs that
are trimers (36), all mammalian GSTs are dimers of subunits
within the class. In general, GST isozymes within a class have
similar substrate specificities, but significant variations in sub-
strate preferences and kinetic properties are often observed
among the isozymes within a class. GST isozymes are expressed

in a gender- (47) and tissue- (13, 24, 60) specific manner. Ex-
cept for the microsomal GSTs, all other isozymes are pre-
sumed to be cytosolic, but recent studies from our laborato-
ries suggest a strong association of some of the Alpha class
GSTs with plasma membrane (45). Crystal structures of most
mammalian GSTs are now available, and excellent reviews con-
taining details of GST gene family, their nomenclature, and
their role in detoxification of xenobiotics are available (24,
33). As the protection against lipid peroxidation is mainly pro-
vided by the Alpha class GSTs via their Se-independent GPx
activity, a brief description of these isozymes given below is
pertinent to this article.

Alpha class GSTs as antioxidant enzymes

In humans and rodents, at least four major Alpha class GST
subunits designated as GSTA1, GSTA2, GSTA3, and GSTA4
have been characterized (24, 27). Corresponding dimeric iso-
zymes are designated as GSTA1-1, GSTA2-2, GSTA3-3, and
GSTA4-4. Recently, an additional subunit GSTA5 (35) has
been cloned, and an Alpha class GST designated as GST5.8
has been partially characterized in human tissues (48, 49). Re-
cent studies (62, 64) suggest that the Alpha class GSTs per-
haps play a more important role than the Se-GPxs (GPx-1,
GPx-2, GPx-3, or GPx-4) in defense mechanisms against lipid
peroxidation. Thus, the Alpha class GSTs can provide protec-
tion against the electrophilic xenobiotics or the drugs not
only via their conjugation to GSH, but also by alleviating ox-
idative stress and subsequent lipid peroxidation that is often
associated with exposure to xenobiotics. GST isozymes,
GSTA1-1 and GSTA2-2, can reduce PL-OOH as well as FA-
OOH with high catalytic efficiency (62, 68). Kinetic proper-
ties of the Alpha class GSTs toward lipid peroxidation products
presented in Table 1 suggest that these enzymes can interrupt
lipid peroxidation chain reactions by reducing hydroperoxides.
The Alpha class GST isozymes mGSTA4-4 (mice), rGSTA4-
4 (rats), hGST5.8, and hGSTA4-4 (humans) have high activ-
ity toward 4-HNE and other a,b-unsaturated aldehyes (Table
2). These isozymes can also detoxify the toxic end products
of lipid peroxidation, easing the burden of electrophilic stress
on the cellular environment. More importantly, recent studies
suggest that these enzymes can also affect cell cycle signaling
by regulating the intracellular concentrations of 4-HNE. These
roles of the Alpha class GSTs in defense against oxidative
stress are outlined in Fig. 1.

The Alpha class GSTs hGSTA1-1 and hGSTA2-2 consti-
tute the bulk of GSTs in human and rodent liver (13, 28, 62,
64). Among the known mammalian GSTs, the Alpha class
GSTs are the most efficient in catalyzing the GSH-dependent
reduction of lipid hydroperoxides (46, 62, 68). Considering
the high abundance of these isozymes in tissues such as liver
(~3% of total soluble protein), these enzymes can contribute
a major portion of the total GPx activity toward lipid hydro-
peroxides. In fact, immunotitration studies using highly spe-
cific antibodies against the Alpha class GSTs have shown that
more than half of the GPx activity of human and rodent liver
toward lipid hydroperoxides can be immunoprecipitated by
these antibodies (62, 64). Kinetic properties of hGSTA1-1
and hGSTA2-2 toward physiologically relevant products of
lipid peroxidation (Table 1) indicate that both hGSTA1-1 and
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hGSTA2-2 have relatively high catalytic efficiency for the re-
duction of FA-OOH and PL-OOH. In general, the activity of
hGSTA2-2 towards these substrates is higher than that of
hGSTA1–1 (68). However, the relative abundance of hGSTA1-1
in human liver is ~10-fold higher than that of hGSTA2-2, in-
dicating a major role of GSTA1-1 in the reduction of lipid hy-
droperoxides. It is possible that the substrate specificities of
hGSTA1-1 and hGSTA2-2 toward individual FA-OOH or PL-
OOH may vary, and further studies into the kinetic properties
of these enzymes toward individual FA-OOH and PL-OOH
may reveal specific functions of these isozymes. The role of
the minor Alpha class enzyme, hGSTA3-3, in reduction of hy-
droperoxides may also be minimal because of its very low
constitutive levels.

Overexpression of GSTA1-1 and GSTA2-2 protects
cells against oxidant toxicity

Both hGSTA1-1 and hGSTA2-2 can use membrane PL-OOH
as substrates in situ (62, 63). Therefore, the protection provided
by these isozymes against lipid peroxidation is not dependent on
release of the oxidized fatty acids from membrane phospholipids
as suggested previously (57), and these enzymes can protect cell
membranes at the site of damage (62, 63). The protective role of

hGSTA1-1 and hGSTA2-2 against oxidant toxicity has been
demonstrated in studies (62) showing that transfection of K562
cells with hGSTA1-1 or hGSTA2-2 protects these cells from
H2O2 cytotoxicity (Fig. 2). These studies have shown that as com-
pared with the wild-type or vector-transfected cells, lower levels
of basal lipid peroxidation are observed in the cells transfected
with hGSTA1-1 or hGSTA2-2. During the oxidative stress, the at-
tenuation of lipid peroxidation in the transfected cells is even
more remarkable (Fig. 3), and transfected cells are relatively
more resistant to the cytotoxic effects of H2O2 and other oxidants
such as naphthalene (63). As H2O2 is not a substrate for GSTA1-1
or GSTA2-2, the protection provided by these enzymes against
H2O2 or oxidant toxicity must come from their ability to attenuate
lipid peroxidation by reducing the hydroperoxides. In vivo studies
also suggest a protective role of the Alpha class GSTs against the
deleterious effects of chronic oxidative stress. Oxidative stress-
induced cataractogenesis in rodents can be attenuated by admin-
istration of curcumin, which selectively induces the Alpha class
GSTs in lens epithelial cells (3). Oxidative stress is involved in
the mechanisms of cataractogenesis induced by administration of
naphthalene or high galactose diet, and the inhibition of naphtha-
lene- and galactose-induced cataractogenesis in mice by cur-
cumin correlates with the induction of the Alpha class GSTs in
lens epithelial cells (38, 39).
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TABLE 1. KINETIC CONSTANTS OF THE GPX ACTIVITY OF hGSTA1-1 AND hGSTA2-2 AGAINST LIPID HYDROPEROXIDES

hGSTA1-1 hGSTA2-2

Specific Specific
activity Km kcat Kcat /Km activity Km kcat Kcat /Km

Substrates (µmol/min/mg) (mM) (s21) (s21mM21) (µmol/min/mg) (mM) (s21) (s21 mM21)

Dilinoleoyl phosphatidylcholine 12.50 0.08 14.5 181.3 14.58 0.05 16.6 353
hydroperoxide

Dilinoleoyl phosphatidyl  11.6 0.057 11.4 200 15.23 0.04 12.7 318
ethanolamine hydroperoxide

5-Hydroperoxyecosatetraenoic 6.2 0.005 5.92 1183 7.52 0.007 9.1 1379
acid

Data are from our published studies (68).

TABLE 2. SPECIFIC ACTIVITY AND KINETIC CONSTANTS OF MAMMALIAN GSTS TOWARD 4-HNE

Specific activity
(µmol/min/mg K

m
k

cat
k

cat
/K

m
Isozymes protein) (µM) (s21) (s21 mM21)

hGSTA4-4 (27) 189 ± 9 37 ± 4 113 ± 4 3,100
hGST5.8 (48) 176.0 ± 17.6 97 ± 2 227 ± 16 2,340
mGSTA4-4 (48) 65.2 ± 3.1 108 ± 3.0 89 ± 6 820
rGSTA4-4 (24, 26) 170 7.4 ± 0.2 144 ± 4 19,459 ± 782
hGSTA1-1 (68) 2.52 ± 0.22 50 2.94 58.8
hGSTA2-2 (68) 1.76 ± 0.18 80 2.1 26.3
hGSTM1-1 (48) 3.23 ± 0.32 121 ± 3.0 6.0 ± 0.20 49
hGSTP1-1 (48) 0.56 ± 0.03 154 ± 12.0 1.07 ± 0.05 7

Data were compiled from studies cited in parentheses. The nomenclature of GSTs is based on reference 33. In brief, a lower-
case letter identifies species and an uppercase letter identifies the class (Alpha). A1-1 or A2-2 means that the enzyme is a homo-
dimer of these subunits. The primary structure of hGST5.8 is unknown yet, and the enzyme is  provisionally named according to
its pI value. hGST5.8, rGSTA4-4, and mGSTA4-4 are immunologically similar, but distinct from hGSTA1-1, hGSTA2-2,
hGSTA3-3, and hGSTA4-4.
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FIG. 1. Role of GSTs in protection against oxidant toxicity and regulation of signaling. The concentration of ROS gen-
erated upon exposure of cells to stress is regulated by primary antioxidant enzymes such as CAT, SOD, and Se-GPxs. Lipid per-
oxidation initiated by ROS escaping these defense mechanisms leads to amplification of oxidative stress. Lipid peroxidation
products are involved in stress-mediated signaling mechanisms, and the Alpha class GSTs by regulating the intracellular concen-
trations of lipid hydroperoxides and 4-HNE can modulate these mechanisms.

FIG. 2. K562 cells transfected with
hGSTA2–2 acquire relative resistance
to the cytotoxicity of H2O2. Cells in log-
phase growth from wild-type ( ), vector-
transfected ( ), and hGSTA2-2-trans-
fected ( ) K562 cells were washed twice,
resuspended in phosphate-buffered sa-
line, and inoculated at a density of 2 3
105 cells/ml (50 µl/well) into eight repli-
cate wells with various H2O2 concentra-
tions (0–50 µM) in a 96-well plate. The
MTT assays were performed according to
a previously described method (25). Blank
(no cells) subtracted OD590 values were
normalized to control (cells without H2O2
treatment). The figure represents results
from one of several independent experi-
ments on H2O2 cytotoxicity. Data were
compiled from our previously published
work (62).



LIPID HYDROPEROXIDES AND
SIGNALING: REGULATION BY

ALPHA CLASS GSTS

There is substantial evidence suggesting involvement of lipid
hydroperoxides in signaling cascades. PL-OOH can affect the
hydrolytic activity of cytosolic phospholipase A2 without marked
changes in the intracellular concentration of free Ca2+ (41,
55). Lipid hydroperoxides have been shown to stimulate in-
terleukin-1-induced nuclear factor-kB activation in a human
endothelial cell line, and platelet-activating factor-like activ-
ity has been attributed to hydroperoxides isolated from oxi-
dized low-density lipoprotein (25). Recent studies have shown
that FA-OOH can activate NADPH oxidase and enhance pro-
duction of O2

2 in vascular smooth muscle cells (31). PL-OOH
can also induce apoptosis in human cell lines through a sustained
activation of stress-activated protein kinase/c-Jun N-terminal
kinase (SAPK/JNK) and caspase 3 (62). As the Alpha class
GSTs can regulate the intracellular levels of lipid hydroper-
oxides, we have studied the possible role of GSTs in the ox-
idative stress-mediated signaling for apoptosis.

Overexpression of hGSTA1-1 or hGSTA2-2
protects against oxidative stress-induced apoptosis

Studies in our laboratory (62) have shown that transfection
of human erythroleukemia K562 cells with the Alpha class
GSTs, hGSTA1-1 or hGSTA2-2, results in ~10-fold higher
GPx activity toward PL-OOH and FA-OOH in the transfected
cells without any compensatory response on the expression of
antioxidant enzymes such as CAT, SOD, and the GPx activity
toward H2O2. Upon treatment with H2O2, the transfected cells
show minimal lipid peroxidation (Fig. 3) and only a transient
activation of JNK, which quickly returns to basal levels. H2O2
does not cause caspase 3 activation in the transfected cells,
and only a minimal number of these cells undergo apoptosis
(62). In contrast, upon treatment with H2O2 under identical con-
ditions, the wild-type and empty vector-transfected cells show

a remarkable increase in lipid peroxidation and a sustained
activation of JNK and caspase 3, and a significant fraction of
cells undergo apoptosis (Fig. 4). Resistance of hGSTA1-1 or
hGSTA2-2 transfected cells to H2O2-induced apoptosis should
be attributed to their enhanced capability to reduce PL-OOH
and FA-OOH because hGSTA1-1 and hGSTA2-2 display no
detectable activity toward H2O2. This would suggest that lipid
hydroperoxides formed as a consequence of oxidative stress
mediate stress-induced apoptosis. This idea is supported by
studies that show that wild-type K562 cells undergo apopto-
sis when treated with PL-OOH and transfection with hGSTA2
cDNA prevents PL-OOH-induced apoptosis (62).

4-HNE has been shown to cause apoptosis in a variety
of human cell lines (16–18, 51). Transfection of cells with
hGSTA1-1 or hGSTA2-2 is not expected to provide protec-
tion against 4-HNE-induced apoptosis because 4-HNE is down-
stream to PL-OOH in the cascade of lipid peroxidation reac-
tions and it is not a preferred substrate for hGSTA1-1 or
hGSTA2-2. Consistent with this idea, 4-HNE-induced apop-
tosis in K562 cells is not inhibited by transfection with
hGSTA1-1 or hGSTA2-2 (62), but is inhibited by transfection
with a 4-HNE-metabolizing enzyme mGSTA4-4 (16, 18). To-
gether, these studies suggest that oxidative stress-induced sig-
naling for apoptosis is transduced through lipid hydroperox-
ides or their downstream product, 4-HNE. This contention is
further supported by our unpublished studies that show that
overexpression of hGSTA1-1 or hGSTA2-2 protects various
cell types from UVA-induced lipid peroxidation and apopto-
sis. Cells overexpressing hGSTA1-1 or hGSTA2-2 are also re-
sistant to apoptosis induced by oxidative stress-causing agents
such as xanthine/xanthine oxidase, adriamycin, and naphtha-
lene (63). It has been demonstrated that human lens epithelial
cells (HLE B-3) show a persistent activation of JNK and cas-
pases and undergo apoptosis when naphthalene is introduced
in the culture medium. On the other hand, hGSTA1-1-overex-
pressing HLE B-3 cells neither show activation of JNK and
caspases nor undergo apoptosis under similar conditions of
naphthalene exposure (63). These findings strongly suggest that
lipid peroxidation products may be a common link among the

GSTs AS ANTIOXIDANT ENZYMES 293

FIG. 3. hGSTA2-2 overexpression sup-
presses oxidative stress-induced lipid perox-
idation. K562 cells (1 3 107) were incubated
with RPMI complete medium alone or RPMI
complete medium containing 100 µM H2O2
and 50 µM FeSO4 for 30 min. The cells were
pelleted by centrifugation, washed with phos-
phate-buffered saline, and homogenized in 10
mM potassium phosphate buffer, pH 7.0, con-
taining 0.4 mM butylated hydroxytoluene. The
whole homogenate was immediately assayed
for malonaldehyde (MDA) by determining thio-
barbituric acid reactive substances. The values
are presented as means ± SD, (n = 3). *Signif-
icantly different from the controls (p < 0.01).
Data were compiled from our previously pub-
lished studies (62).
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mechanisms of the signaling for apoptosis by oxidative stress,
chemical agents, and UV irradiation. More importantly, these
studies strongly indicate that GSTs can influence stress-mediated
signaling by regulating the intracellular levels of lipid peroxi-
dation products.

ROLE OF ALPHA CLASS GSTs
IN REGULATION OF 4-HNE- 

MEDIATED SIGNALING

4-HNE and signaling

Being electrophilic in nature, 4-HNE is a potent alkylating
agent; which can react with a variety of nucleophilic sites in
DNA and proteins, generating various types of adducts (22).
Its role in signaling mechanisms has been suggested for quite
some time (14, 21, 42). Submicromolar concentrations of 4-
HNE have been shown to activate protein kinase C-bII in rat
hapotocytes, whereas micromolar concentrations of 4-HNE
inhibit its activity (19). 4-HNE can affect nitric oxide homeo-
stasis by inhibiting nuclear factor-kB dependent activation of
inducible nitric oxide synthase (23). Recent studies indicate
that intracellular 4-HNE levels are correlated with transform-
ing growth factor-b1 levels in colon cancer (67). It has also
been proposed that 4-HNE induces cyclooxygenase-2 via the
activation of p38 mitogen-activated protein kinase (MAPK)
(29, 30). Studies with a variety of cell lines suggest that 4-
HNE activates SAPK/JNK (17, 18, 40, 59). In hepatic stellate
cells, 4-HNE activates JNK through direct binding and not by
phosphorylation (40), whereas in other cell types, 4-HNE may
activate JNK through the redox-sensitive MAPK kinase cas-
cade (59). Activation of JNK by 4-HNE is accompanied by the
activation of caspase 3 and eventual apoptosis (17, 18, 51).
Although the majority of studies show that 4-HNE is pro-
apoptotic, it can also stimulate cell proliferation at relatively
lower intracellular concentrations (16, 43), and it has been
postulated that the intracellular concentration of 4-HNE may
differentially affect the signals for proliferation, differentia-
tion, and apoptosis (16–18, 21).

GSTs as determinants of the intracellular 
levels of 4-HNE

4-HNE being an a,b-unsaturated aldehyde has an electro-
philic center, and it can be nonenzymatically conjugated to
cellular nucleophiles such as GSH. The conjugation of 4-HNE
to GSH in cells is, however, facilitated by GSTs that catalyze
this reaction (1). A rat enzyme initially designated as GST8-8
(now rGSTA4-4) was shown to have high catalytic efficiency
for 4-HNE (53). GST isozymes with substrate preference
for 4-HNE and a high degree of homology with rGSTA4-4
have since been identified in mice (mGSTA4-4; 70), bovine
(bGST5.8; 52), and human (GST5.8, 48; hGSTA4-4, 27).
These enzymes belonging to a subgroup of the Alpha class GSTs
have substrate preference for 4-HNE (Table 2) and are immuno-
logically distinct from GSTA1-1, GSTA2-2, and GSTA3-3. In-
terestingly, in humans two distinct 4-HNE-metabolizing en-
zymes (hGSTA4-4 and hGST5.8) with Kcat/Km values in the
range of >2,000 s21 mM21 are present. Whereas hGSTA4-4

has been cloned (27), the primary structure of hGST5.8 is still
not known and its cDNA has not been cloned perhaps due to
its very low constitutive levels (17). Kinetic properties of tis-
sue purified hGST5.8 have been studied, and its immunologi-
cal similarity to mouse enzyme mGSTA4-4 suggests struc-
tural similarities between these two enzymes.

The relative abundance of 4-HNE-metabolizing GST iso-
zymes is much lower than that of GSTA1-1, GSTA2-2, or the
Mu and Pi class GSTs, which constitute the bulk of GST pro-
tein in mammalian tissues. In extrahepatic tissues, Pi and Mu
class GSTs are predominant and the contribution of these en-
zymes in the metabolism of 4-HNE could also be substantial
despite their low catalytic efficiency toward 4-HNE (Table 2).
This is consistent with the results of our as yet unpublished
studies showing that ~40% of residual GST activity toward 4-
HNE is retained in the tissues of mGSTA4-4 null (2/2)
mice. Redundancy in enzymes responsible for the metabo-
lism of 4-HNE is similar to that observed with GPxs, which
are responsible for the detoxification of H2O2 and lipid hy-
droperoxides and provide formidable defense against oxida-
tive stress. This perhaps underscores the physiological signif-
icance of the mechanisms for maintaining the intracellular
levels of 4-HNE. Recent studies reviewed below strongly sug-
gest that GSTs can modulate stress-mediated signaling by
regulating intracellular levels of 4-HNE.

Overexpression of GSTA4-4 promotes proliferation
in some cell lines

Overexpression of 4-HNE-metabolizing GST isozyme in
cells results in lower intracellular levels of 4-HNE (16–18,
65). K562 cells transfected with mGSTA4-4 having about five-
fold higher GST activity toward 4-HNE as compared with the
controls show only ~10% of 4-HNE levels as compared with
the empty vector-transfected or wild-type cells (16). Interest-
ingly, mGSTA4-4-transfected cells grow at a 50% higher rate
as compared with their wild-type or vector-transfected coun-
terparts, suggesting that lowering the levels of 4-HNE promotes
proliferation (Fig. 5). Promotion of proliferation in cells hav-
ing low intracellular levels of 4-HNE has also been observed
in other cell lines. Unpublished studies in our laboratory also
show that HLE B-3 cells transfected with hGSTA4-4 have
lower basal levels of intracellular 4-HNE and grow at a rate
about threefold faster as compared with the wild-type or vec-
tor-transfected cells. Promotion of the proliferation of aortic
smooth muscle cells by low levels of 4-HNE has also been
observed by Ruef et al. (43).

Overexpression of GSTA4–4 protects against
oxidative stress-induced apoptosis

We have shown that increasing the concentrations of 4-HNE
in the medium differentially affects mGSTA4-4-transfected
and empty vector-transfected K562 cells. Exposure of 20 µM
4-HNE to the wild-type or empty vector-transfected K562
cells results in a marked erythroid differentiation, whereas
the cells transfected with mGSTA4-4 do not undergo such dif-
ferentiation (16), suggesting a role of 4-HNE in signaling for
differentiation and its modulation by GSTs. Prolonged expo-
sure of the wild-type or vector-transfected K562 cells to rela-
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tively higher concentrations of 4-HNE in the medium leads to
apoptosis. In contrast, the cells transfected with mGSTA4-4
are resistant to 4-HNE-induced apoptosis under these conditions
(16). More importantly, the cells transfected with mGSTA4-4
also show resistance to H2O2-induced apoptosis, which implies
that the signaling for H2O2-induced apoptosis may be conveyed
through 4-HNE. Transfection with mGSTA4–4 does not af-
fect the antioxidant enzymes such as CAT, GPx, and SOD.
Therefore, the apoptotic effect of H2O2 in the transfected
cells can be blocked only if 4-HNE is directly involved in
H2O2-mediated signaling for apoptosis. Similar effects of
mGSTA4-4 transfection on H2O2-induced apoptosis have also
been observed in HL-60 cells (18). These studies show that in
mGSTA4-4-transfected HL-60 cells, H2O2-mediated activa-
tion of JNK and caspase 3 is inhibited and the transfected
cells are resistant to H2O2-induced apoptosis.

Induction of hGST5.8 and RLIP76 protects against
oxidative stress and UVA-induced apoptosis

As suggested by the results of studies discussed above, the
intracellular concentrations of 4-HNE play an important role
in the transduction of signals for apoptosis in stressed cells.
Under stress conditions, a rise in 4-HNE levels is expected,
and in response to stress, cells may be expected to up-regulate
the mechanisms that determine the intracellular concentra-
tions of 4-HNE. In humans, a coordinated action of GSTs and
the transporters that catalyze the ATP-dependent transport of

the GSH conjugate of 4-HNE (GS-HNE) regulates the intra-
cellular concentrations of 4-HNE (17). GST isozyme, hGST5.8,
catalyzes the conjugation of 4-HNE to GSH to form GS-HNE,
which must be transported out of the cells to sustain GST-
mediated conjugation of 4-HNE. We have shown that the ma-
jority of GS-HNE transport is mediated by RLIP76 (6, 8, 44),
a novel transporter capable of transporting a variety of xeno-
and endobiotics with diverse structures (2, 4–11, 44, 50). Im-
munoprecipitation studies with highly specific antibodies against
RLIP76 and MRP1 have shown that, in a variety of cell lines
of human origin, ~70% of the ATP-dependent transport of
GS-HNE is mediated by RLIP76 (44) and that it can be
blocked by coating the cells with anti-RLIP76 IgG.

Our recent studies on the effect of stress on the intracellu-
lar concentrations of 4-HNE show that a rapid increase in 4-
HNE levels is observed when cells are transiently exposed to
low levels of H2O2, heat (42°C), or mild UVA irradiation (17,
65). The increase in 4-HNE levels is accompanied by a rapid
induction of hGST5.8 and RLIP76, which regulate the intra-
cellular levels of 4-HNE. The cells exposed to these transient
and mild stressors acquire the capability to transport GS-HNE
at a severalfold faster rate as compared with the control cells
and acquire resistance to 4-HNE-induced apoptosis by block-
ing the activation of JNK and caspases. Interestingly, the stress-
preconditioned cells also acquire resistance to H2O2-, UVA-,
and O2

2-induced apoptosis because of their capability to ex-
clude 4-HNE from the intracellular environment at a faster
pace (17, 65). The resistance of stress-preconditioned cells to
oxidative stress-mediated apoptosis can be abrogated by coat-
ing cells with anti-RLIP76 IgG, which blocks the efflux of
GS-HNE resulting in increased intracellular levels of 4-HNE
(Fig. 6). This phenomenon of mild stress preconditioning re-
sulting in the induction of hGST5.8 and RLIP76 and the ac-
quisition of resistance against oxidative stress-mediated apop-
tosis is observed in a variety of cell lines of human origin
(17). Therefore, the involvement of 4-HNE in stress-mediated
signaling does not appear to be limited only to specific cell
types and that GSTs play an important physiological role in
its regulation.

Overexpression of hGSTA4-4 affects expression of
genes involved in cell cycle signaling

Further evidence for a pivotal role of GSTs in the modula-
tion of cell cycle signaling is suggested by unpublished stud-
ies in our laboratory showing that the transfection of HLE B-3
cells with human 4-HNE-metabolizing GST isozyme hGSTA4-4
results in transformation and rapid growth of these cells. HLE
B-3 are human lens epithelium cells immortalized with SV-40
transformation and are adherent cells. When these cells are
transfected with hGSTA4-4, as expected the intracellular level
of 4-HNE goes down. Surprisingly, hGSTA4-4-overexpressing
cells with reduced levels of 4-HNE show rounding and de-
tachment from the surface that is accompanied by a faster growth
rate. These results strongly suggest a role of GSTs and perhaps
other 4-HNE-metabolizing enzymes including aldose reduc-
tase and aldehyde dehydrogenase in cell cycle signaling. The
mechanisms through which HLE B-3 cells undergo transfor-
mation subsequent to hGSTA4-4 transfection are being cur-
rently elucidated in our laboratory. Preliminary studies indi-
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FIG. 5. mGSTA4-4 overexpression resulting in lower 4-
HNE levels leads to increased growth rate of K562 cells.
Wild-type ( ), vector-transfected ( ), and mGSTA4-4-trans-
fected ( ) K562 cells were inoculated at a density of 1 3 105

cells/ml in 10 ml of RPMI 1640 medium containing 10%
(vol/vol) fetal bovine serum and 1% (vol/vol) penicillin/strep-
tomycin solution. Aliquots (100 µl) were removed at 24-h inter-
vals, and trypan blue-excluding cells were counted using a he-
mocytometer. Average cell density and standard deviations from
three separate experiments are presented. Data were compiled
from our previous studies (16).
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FIG. 6. Cells preconditioned with mild transient stress acquire resistance to 4-HNE-, H2O2, O2
2, and UVA-induced apop-

tosis, and this resistance can be compromised by blocking the efflux of GS-HNE by anti-RLIP76 IgG. K562 cells (1 3 106)
were fixed onto poly-L-lysine-coated slides by cytospin at 500 g for 5 min, and the TUNEL apoptosis assay was performed to de-
tect apoptosis. The slides were analyzed by fluorescence microscope (Nikon Eclipse 600, Japan). Apoptotic cells showed charac-
teristic green fluorescence. (Left upper panel) Control K562 cells pretreated with heat shock (42°C, 30 min) and allowed to re-
cover for 2 h at 37°C. (Right upper panel) Control cells without heat shock pretreatment, incubated with 20 µM 4-HNE for 2 h.
(Left lower panel) Cells pretreated with heat shock, allowed to recover for 2 h at 37°C, followed by incubation in medium con-
taining 20 µM 4-HNE for 2 h at 37°C. (Right lower panel) Heat shock-pretreated cells, allowed to recover for 1 h at 37°C, after
which anti-RLIP76 IgG was added to medium (20 µg/ml final concentration) and incubated for an additional 1 h to coat the cells
with anti-RLIP76 IgG for blocking the efflux of GS-HNE. Anti-RLIP76 IgG-coated cells were then incubated for 2 h at 37°C in
medium containing 20 µM 4-HNE. (Middle panel) The percentage of the apoptotic cells counted from each slide. Similar results
were obtained when cells were preconditioned with mild UVA or H2O2 exposure and instead of 4-HNE, prolonged exposure to
H2O2, UVA, or O2

2 was used to induce apoptosis (17, 65).



cate that hGSTA4-4-transfected cells show substantial down-
regulation of p53 and up-regulation of transforming growth
factor-b and extracellular signal-regulated kinase, suggesting
that the expression of these proteins involved in cell cycle sig-
naling is modulated by GSTs. The role of GSTs in regulating
cell cycle signaling and the mechanism through which 4-HNE
modulates these processes should be vigorously pursued.

ABBREVIATIONS

CAT, catalase; FA-OOH, fatty acid hydroperoxides; GPx,
glutathione peroxidase; GSH, glutathione (reduced form);
GS-HNE, glutathione conjugate of 4-hydroxynonenal; GST,
glutathione S-transferase; HLE B-3 cells, human lens epithe-
lial cells; 4-HNE, 4-hydroxynonenal; H2O2, hydrogen perox-
ide; K562 cells, human erythroleukemia cells; MAPK, mitogen-
activated protein kinases; O2

2, superoxide anion; PL-OOH,
phospholipid hydroperoxides; RLIP76, 76-kDa Ral-binding
GTPase activating protein (RalBP1); ROS, reactive oxygen
species; SAPK/JNK, stress-activated protein kinase/c-Jun N-
terminal kinase; Se-GPx, Se-dependent glutathione peroxi-
dase; SOD, superoxide dismutase.
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